Nonlinear spectrums of Finsler manifolds

نویسندگان

چکیده

In this paper we investigate the spectral problem in Finsler geometry. Due to nonlinearity of Finsler–Laplacian operator, introduce faithful dimension pairs by means which spectrum a compact reversible metric measure manifold is defined. Various upper and lower bounds such eigenvalues are provided spirit Cheng, Buser Gromov, extend several aspects results Hassannezhad, Kokarev Polterovich. Moreover, construct based on Lusternik–Schnirelmann category, Krasnoselskii genus essential dimension, respectively; however, also show that Lebesgue covering pair not faithful. As an application, Bakry–Émery closed weighted Riemannian can be characterized pair.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Homotheties of Finsler Manifolds *

We give a new and complete proof of the following theorem, discovered by Detlef Laugwitz: (forward) complete and connected finite dimensional Finsler manifolds admitting a proper homothety are Minkowski vector spaces. More precisely, we show that under these hypotheses the Finsler manifold is isometric to the tangent Minkowski vector space of the fixed point of the homothety via the exponential...

متن کامل

Isometric Submersions of Finsler Manifolds

The notion of isometric submersion is extended to Finsler spaces and it is used to construct examples of Finsler metrics on complex and quaternionic projective spaces all of whose geodesics are (geometrical) circles.

متن کامل

Low dimensional flat manifolds with some classes of Finsler metric

Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2021

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02767-x